On sub-geometric ergodicity of diffusion processes

نویسندگان

چکیده

In this article, we discuss ergodicity properties of a diffusion process given through an Itô stochastic differential equation. We identify conditions on the drift and coefficients which result in sub-geometric corresponding semigroup with respect to total variation distance. also prove contractivity under class Wasserstein distances. Finally, two classes Markov processes jumps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov‎ ‎processes

‎In the present paper we investigate the $L_1$-weak ergodicity of‎ ‎nonhomogeneous continuous-time Markov processes with general state‎ ‎spaces‎. ‎We provide a necessary and sufficient condition for such‎ ‎processes to satisfy the $L_1$-weak ergodicity‎. ‎Moreover‎, ‎we apply‎ ‎the obtained results to establish $L_1$-weak ergodicity of quadratic‎ ‎stochastic processes‎.

متن کامل

Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes

Andrey G. Cherstvy, Aleksei V. Chechkin, 3 and Ralf Metzler 4 Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany Akhiezer Institute for Theoretical Physics, Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine Max-Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany Department of Physics, Tampere Univ...

متن کامل

Ergodicity of Langevin Processes with Degenerate Diffusion in Momentums

This paper introduces a geometric method for proving ergodicity of degenerate noise driven stochastic processes. The driving noise is assumed to be an arbitrary Levy process with non-degenerate diffusion component (but that may be applied to a single degree of freedom of the system). The geometric conditions are the approximate controllability of the process the fact that there exists a point i...

متن کامل

Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes.

We consider diffusion processes with a spatially varying diffusivity giving rise to anomalous diffusion. Such heterogeneous diffusion processes are analysed for the cases of exponential, power-law, and logarithmic dependencies of the diffusion coefficient on the particle position. Combining analytical approaches with stochastic simulations, we show that the functional form of the space-dependen...

متن کامل

Geometric Ergodicity of Gibbs Samplers

Due to a demand for reliable methods for exploring intractable probability distributions, the popularity of Markov chain Monte Carlo (MCMC) techniques continues to grow. In any MCMC analysis, the convergence rate of the associated Markov chain is of practical and theoretical importance. A geometrically ergodic chain converges to its target distribution at a geometric rate. In this dissertation,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2021

ISSN: ['1573-9759', '1350-7265']

DOI: https://doi.org/10.3150/20-bej1242